シティズンデータサイエンスラボ

「データサイエンスをみんなの手に。」を目標に掲げるデータビークルのオウンドメディア。「シティズンデータサイエンス」とは、統計学の専門家ではない一般の人々がツールを用いて手軽にデータを活用すること。データ分析の世界をより身近にします。https://www.dtvcl.com/

シティズンデータサイエンスラボ

「データサイエンスをみんなの手に。」を目標に掲げるデータビークルのオウンドメディア。「シティズンデータサイエンス」とは、統計学の専門家ではない一般の人々がツールを用いて手軽にデータを活用すること。データ分析の世界をより身近にします。https://www.dtvcl.com/

マガジン

  • 市民データサイエンスの現場を訪ねて

    データビークルの最高製品責任者であり統計家の西内啓がデータ活用で成果をあげている企業・組織のキーパーソンの方とデータサイエンスの現実について語り合う対談シリーズ。

  • データサイエンス入門講座

    データを活用してエビデンスに基づいた経営判断を行いたいと考えるすべての人に。「データでもっと儲ける方法 ~経営とマーケティングのためのアナリティクスデザイン~(著:西内啓/発行:翔泳社)」の全文を公開します。

記事一覧

第13回 予測モデルとAIの使い分け

第12回 洞察・予測・最適化〜AI開発で同様のところと違うところ

第11回 何がその違いと関係しているのか〜基本的なデータ分析の読み方(2)

第10回 何がその違いと関係しているのか〜基本的なデータ分析の読み方(1)

第13回 予測モデルとAIの使い分け

シティズンデータサイエンスラボは「データサイエンスを全ての人に」を掲げる株式会社データビークル(https://www.dtvcl.com/)が運営する公式noteです。 正確な予測が価値を生むときまずリサーチデザインを応用して、予測モデルやAI開発の課題設定について考えてみましょう。予測モデルとは統計手法や機械学習手法を使って「とにかく正確に何かの値を予測してその結果を出力するもの」と述べました。一方AIについては「予測に基づき、最適な選択肢を提示する」ものと述べました。

第12回 洞察・予測・最適化〜AI開発で同様のところと違うところ

シティズンデータサイエンスラボは「データサイエンスを全ての人に」を掲げる株式会社データビークル(https://www.dtvcl.com/)が運営する公式noteです。 AI開発ではどうなのか前章ではアウトカムと解析単位というリサーチデザインの基本をもとに、「何に活かしていいかわからない」という状況で、どう考えればよいかということを説明してきました。 データ分析のような定量的な研究は、「何かと何かの違いを生んでいる原因がどこにあるかを考える」ために行なわれます。したがっ

第11回 何がその違いと関係しているのか〜基本的なデータ分析の読み方(2)

シティズンデータサイエンスラボは「データサイエンスを全ての人に」を掲げる株式会社データビークル(https://www.dtvcl.com/)が運営する公式noteです。 他の説明変数が絡んだ関係「p値」や「95%信頼区間」といったデータの見方を理解できれば「たまたまの差」に惑わされることはなくなります。それでもBIツールなどで描くグラフの多くは、1つの説明変数と1つのアウトカムの間の関係を2次元的にしか把握できません。立体的なグラフィックを使ったり、色分けをしたり、さまざ

第10回 何がその違いと関係しているのか〜基本的なデータ分析の読み方(1)

シティズンデータサイエンスラボは「データサイエンスを全ての人に」を掲げる株式会社データビークル(https://www.dtvcl.com/)が運営する公式noteです。 効率的な「違いの見つけ方」アウトカムと解析単位が決まり、データから考え得る限りさまざまな解析単位ごとの説明変数を加工することができたら、いよいよ分析に入りましょう。 再述しますが、データ分析のような定量的な研究は、「何かと何かの違いを生んでいる原因がどこにあるかを考える」ために行なわれます。したがって「